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Introduction to Microscopic IC Image Analysis
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Major Challenges:

Millions of images per layer

Image variations across layers and regions
Anomalies from sample preparation & imaging
Small feature size / narrow gap between features
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Deep Learning (DL)-based Image Analysis Framework
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Deep Learning (DL)-based Image Analysis Framework
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Self-supervised Anomaly Detection with GAN
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Self-supervised Anomaly Detection with GAN

Training Stage:

+ Alternating training between
Encoder/Decoder (Generator)
and Discriminator

* Generator is optimized with
weighted sum of 4 loss terms

+ Discriminator is optimized with
adversarial loss

Testing Stage:

* Reconstruction loss, z-loss, and
feature loss are computed for
patches of input images

» 3loss values are normalized as
anomaly scores to determine
anomalous images.
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Self-supervised Anomaly Detection: Score Ranking

Low anomaly score

t:j NANYANG TECHNOLOGICAL UNIVERSITY ' SINGAPORE



Self-supervised Anomaly Detection: Score Ranking

Low anomaly score

Medium anomaly score

High anomaly score
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Self-supervised Anomaly Detection: Accuracy

Anomalous regions are
highlighted by high loss
values (anomaly score).

Anomaly Reconstructed Reconstruction Feature 7-Score
Groundtruth Image Score Score
Method AUC F1 TPR FPR

B f h
ResNet f-anoGAN [17] | 0.5623 | 03013 || 0.1896 | 0.0063 il [pau WSS s

PR methods, without
ConvNet f-anoGAN 0.5638 | 0.3165 || 0.1896 | 0.0008 supervision/data labeling.
GANomaly [18] 0.9334 | 0.7464 || 0.6724 | 0.0118
Ours (IAD only) 0.9728 | 0.8348 || 0.7845 | 0.0086
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Joint Task on Anomaly Detection & Inpainting

Concurrent anomaly detection and inpainting, by adding pairs of corrupted and corresponding clean images into training

Model PSNR SSIM

IDBP [26] 31.3390 | 0.9575
IRCNN [6] 31.2245 | 0.9586
TSLRA [5] 30.4554 | 0.9563

Ours (IAD + Inpainting) | 34.4798 | 0.9627

Good performance on image inpainting

Method AUC F1 TPR FPR
ResNet f-anoGAN [17] | 0.5623 | 0.3013 || 0.1896 | 0.0063
ConvNet f-anoGAN 0.5638 | 0.3165 || 0.1896 | 0.0008
GANomaly [18] 0.9334 | 0.7464 || 0.6724 | 0.0118
Ours (IAD only) 0.9728 | 0.8348 || 0.7845 | 0.0086
Ours(IAD+Inpainting) | 0.9927 | 0.9123 || 0.8966 | 0.0063

Further improve image anomaly detection
Anomaly IDBP IRCNN TSLRA
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Conclusions

« Adeep learning-based framework for IC image analysis has been presented. Deep learning models
can be effectively applied to retrieve the standard cells and interconnects in IC image analysis,

concerning a wide variety of tasks and solutions.

* A major limitation of supervised learning models is their requirements on considerable amount of

labelled data. Unsupervised or semi-supervised analysis can alleviate the data issue on certain tasks.

+ Aself-supervised GAN-based network has been presented for concurrent IC image anomaly detection

and inpainting.
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