Trust Your Hardware by Physical Inspection

Matthias Ludwig (IFAG CSS M CS) 2023-01-24

How to use RE / physical inspection to generate trust?

Table of contents

1	Introduction	4
2	On Counterfeit Detection	6
3	On Layout Verification	14
4	Conclusion	24

Trust & Security Threats Along the Distributed Value Chain

Security threats due to outsourcing of design and fabrication to third parties:

- 1. Hardware Trojans: Insertion of malicious modifications
- 2. IP stealing: Extraction of intellectual property
- 3. IC counterfeiting: cloning, recycling, overproduction, etc.

3 Counterfeit Landscape

D. Forte, R.S. Chakraborty: Counterfeit Integrated Circuits: Threats, Detection, and Avoidance; Tutorial CHES2018

Visual Abstract of Our Approach

> List of characteristic features

Stage	Feature	Property
FEOL {	Polysilicon _N Shallow Iso Deep Trench	[Pitch, Thickness, Width] _N Type, Thickness Type, Depth, Width
BEOL	Contact Metal _N VIA _N Type	Pitch, Thickness, Width [Pitch, Thickness] _N [Pitch, Thickness, Width] _N {Copper, Alu/Tungsten}
General	Substrate Misc.	{e.g. Bulk-Si, SOI, GaN} e.g. Passivation, Die Thickness

> Example: BEOL

Technical Implementation

Example Images

Fig. 9: Four example SEM cross-section images of semicondcutor devices and their segmented counterparts. They correspond to ID 2, 3, 4, and 6 from table IV and depict a comparable zoom level.

ID	CF	Images	Pitch, Thickness, Width [nm]: Contact	Thickness [nm]; M1: M2: M3: M4: M5: M6: M7	Pitch, Thickness, Width [nm]; V1: V2: V3: V4: V5: V6	Distance (F)	Is CF?
1	×	30	430, 877, 182	604; 506; 506; 874; 879	{470, 807, 308; n.a., 861, 484;	0.10	×
2	×	27	491, 938, 244	646; 708; 1385; 1395; 3325	1.a., 393, n.a.} {495, 1061, 245; n.a., 2404, 571; 1957, 2307, 822; n.a., 2393, 571}	0.04	×
3	×	19	459, 812, 194	645; 757; 1553; 1456; 3650	{503, 1068, 194; n.a., 2455, 777; n.a., 2375, 777; n.a., 2423, 1096}	0.16	×
4	1	53	477, 899, 214	613; 664; 813; 1108	{495, 762, 232; 523, 777, 214; 719, 938, 232}	1.18	1
5	X	25	488, 865, 207	669; 687; 3271	{494, 633, 208; 2162, 1773, 1229} {506, 986, 255; n.a., 1064, n.a.;	0.08	×
6	×	31	505, 890, 219	675; 2216; 723; 1468; 1426; 3298	n.a., 2638, 851; n.a., 936, 2426; n.a., 2447, n.a.}	0.26	×
7	×	28	424, 758, 157	641; 715; 777; 1296; 1259; 8740; 3037	{493, 994, 195; 502, 629, 129; 613, 1901, 301, 3168, 2074, 667; 2901, 1815, 815; 2901, 1889, 667}	0.21	×

Approach is robust to measurement errorsForged device was confidently detected

Assumed Threat Model

- > Verification and Validation (V&V) Framework
- > Reverse Engineering Process Assessment

Pre-Requisite: Scoring Figures

Physical Verification: Layout Data

Physical Verification: Results

Equal Scanner Settings: Scanner type: *Raith CS150 Two*; Detector: *ET-SE*; Field of view: *16.0µm*; Pixel Size: *4.0nm*; Pixel dwell time: *6.0µs*; Image resolution: *16Mpx* (4000 x 4000); Bit depth: *8 Bit*; Grid: *12 x 12*

Scanner Settings		Image Processing				
Layer	Acc. Volt.	Focus	Stitching Method	Pre-Processing	Segmentation Method	Post-Processing
Metal 1	$3.5\mathrm{kV}$	$4.96\mathrm{mm}$	NCC (local), MLE (global)	Median Filter (1 x), Kernel: 5 x 5	Edge Detection, gradient oriented flood-fill	Vertex simplification, Deletion $(< 70 Px^2)$
Metal 2	$7.0\mathrm{kV}$	$4.95\mathrm{mm}$	NCC (local), MLE (global)	Median Filter (7 x), Kernel: 5 x 5	Thresholding	Vertex simplification, Deletion $(<100 Px^2)$
Metal 3	$7.0\mathrm{kV}$	$5.00\mathrm{mm}$	NCC (local), W-LMS (global)	Median Filter (3 x), Kernel: 5 x 5	Edge Detection, gradient oriented flood-fill	Vertex simplification, Deletion $(<100 Px^2)$

Metal 3	 Only statistically evaluated via polygon features Normal mode without user 		99.66 (+2.50)	99.64 (+2.49)	99.67 (+2.49)	44,680	44,693	
Metal 1 Metal 2	92.54 95.00	89.55 95.13	95.73 94.87	95.70 (+3.18) 97.92 (+2.92)	92.63 (+3.08) 98.05 (+2.92)	99.03 (+3.30) 97.79 (+2.92)	30,386 46,429	32,486 46,302
Layer]	F1 Score(%)	Precision(%)	Recall(%)	F1 Score(%)	Precision(%)	Recall(%)	$\frac{\text{No. of } f}{\text{GDS}}$	RE

2D Mosaic Aberrations

	Deviation [nm]
M1 Avg.	19
M1 max.	56
M2 Avg.	13
M2 max.	65
M3 Avg.	8
M3 max.	18

- Minimum dimensions on M1 and M2 are 70 nm
- Consequence: 3D
 Alignment not possible

Scan Time Evaluation

$$T_{Total} = k \cdot \frac{Die_x \cdot Die_y}{Res^2} \cdot t_{dwell}$$

- > k: Factor of processing overhead
- > *Die_x*: Die-length in x-direction [m]
- > *Die_y*: Die-length in y-direction [m]
- > Resc: Resolution per pixel [m/px]
- > t_{dwell} : Dwell time per pixel [s/px²]

FoM Comparison

	F1-Score	Precision	Recall	loU	Measured Time
CS150 Two (t _{dwell} : 6 µs)	97.59%	96.63%	98.57%	6.08%	03h 46min 11s
eSCAN 2018 (t _{dwell} : 30 ns)	98.10%	97.61%	98.59%	6.46%	00h 10min 12s
eSCAN 2018 (t _{dwell} : 500 ns)	99.04%	98.84%	99.24%	5.49%	00h 28min 25s

CS150 Two	eSCAN 2018	eSCAN 2018
t _{dwell} : 6 μs	t _{dwell} : 500 ns	t _{dwell} : 30 ns

Conclusion

Counterfeit detection possible through evaluation of technological device features.

Full V&V workflow to handle **DfM, manufacturing**, and **RE process variations**.

Sample preparation and distortion-free mosaicking still **major bottle-necks** especially for larger areas and advanced technology nodes.

Part of your life. Part of tomorrow.

References (On Counterfeit Detection)

Ludwig, M.; Lippmann, B.; Bette, A.-C. & Lenz, C. Demo: A Fully Automated Process for Semiconductor Technology Analysis through SEM Cross-Sections 25th International Conference on Pattern Recognition (ICPR), **2021**

Ludwig, M.; Purice, D.; Lippmann, B.; Bette, A.-C. & Lenz, C. Towards Fully Automated Verification of Semiconductor Technologies *Artificial Intelligence for Digitising Industry - Applications, River Publishers*, **2021**, 147-160

Pollach, M.; Schiegg, F.; Ludwig, M.; Bette, A.-C. & Knoll, A. Boundary Enhanced Semantic Segmentation for High Resolution Electron Microscope Images 2022 30th European Signal Processing Conference (EUSIPCO), **2022**

Purice, D.; Ludwig, M. & Lenz, C. An End-to-End AI-based Automated Process for Semiconductor Device Parameter Extraction Industrial Artificial Intelligence Technologies and Applications, River Publishers, **2022**, 53 - 72

Ludwig, M.; Bette, A.-C.; Lippmann, B. & Sigl, G. Counterfeit Detection by Semiconductor Process Technology Inspection (accepted) 28th IEEE European Test Symposium, IEEE, **2023**

References (On Layout Verification)

Singla, A.; Lippmann, B. & Graeb, H. Verification of Physical Chip Layouts Using GDSII Design Data 2019 IEEE 4th International Verification and Security Workshop (IVSW), IEEE, **2019**, 55-60

Lippmann, B.; Unverricht, N.; Singla, A.; Ludwig, M.; Werner, M.; Egger, P.; Duebotzky, A.; Graeb, H.; Gieser, H.; Rasche, M. & Kellermann, O.

Verification of physical designs using an integrated reverse engineering flow for nanoscale technologies *Integration, Elsevier BV,* **2020**, *71*, 11-29

Ludwig, M.; Lippmann, B. & Unverricht, N. Zachäus, C. & Meyer, G. (*Eds.*) Enabling Trust for Advanced Semiconductor Solutions Based on Physical Layout Verification Intelligent System Solutions for Auto Mobility and Beyond, Springer International Publishing, **2021**, 87-103

Ludwig, M.; Bette, A.-C. & Lippmann, B. ViTaL: Verifying Trojan-Free Physical Layouts through Hardware Reverse Engineering 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE), IEEE, **2021**, 1-8