
Hardware

Security Lab

Towards a “Design for Secure System” EDA tool

Prof. Avi Mendelson

CS department, Technion
avi.mendelson@Technion.ac.il

mailto:avi.mendelson@Technion.ac.il

Hardware

Security Lab

Agenda

● Our main current activities
○ RE related

● Why do we need an EDA tool for secure systems

● Possible implementation directions

● Discussion

Hardware

Security Lab

Current main research direction:

Subgraph Matching for

Hardware Reverse Engineering

Hardware

Security Lab

Hardware reverse engineering

Generate netlist
graph of inputs-outputs

Apply ML
techniques to
identify subcircuits

semantic segmentation

localization segmentation

cat, dog, duck

B0
A0

C1

C0

B1
A1

C2

B2A2

S

C=A+B
Shifter
>>>>>

MuxS

Hardware

Security Lab

Graph isomorphism and graph similarities

● asd

Base on: Graph Similarity and its Applications to Hardware Security, Marc Fyrbiak, IEEE trans. computers, 2020

Hardware

Security Lab

Graph Similarity based tool
➢Data provider: VHDL, netlist of Scan based

➢Netlist extraction: if the input is from HAL

➢Smoother - convert a gate-level netlist

to a flip-flop dependency graph (FFG).

➢SCAN reader: An alternative to the HDL

data provider.

➢Circuit Library: sub-graphs with known

issues

➢Identifier: sub-circuit localization stage.

➢Partitioning: partition (clustering) the

circuit by points of interest.

➢Prioritizer: Determines the order in

which the sub-circuits are compared

➢Comparator: find the suspected

subgraphs

Due to the limited number of examples, we try to

synthetically generate (sub-)graphs based on

existing design -- WIP

Hardware

Security Lab

Agenda

● Our main current activities
○ RE related

● Why do we need an EDA tool for secure systems

● Possible implementation directions

● Discussion

Hardware

Security Lab

Why do we need an EDA based tool

● We strongly believe that it is near to impossible to take an existing design and

make it secure

● Security needs to be considered throughout the entire development process.

● Unfortunately, we do not have enough tools to support it

● In SW we developed the notion of “Static analysis”; what is the equivalence in

HW? E.g.,
○ Type checking

○ Memory boundaries

○ Uninitialized values

○ Can we check timing violations in static analysis?

Hardware

Security Lab

What we can expect to achieve with such a tool?

● To assist the design process at ALL levels of maturity

● To analyze the CURRENT state of the design (statically) in order to indicate if
○ There are known security hazards; e.g., accessing restricted data is not protected

○ Under some conditions, the design may be exposed to security hazards; e.g., the secure

signal needs to be raised at least 2 cycles before any unprivileged read

● If your design contains 3PIP (3rd party IP) → does the integration of this IP

may lead to a security hazard

Hardware

Security Lab

Agenda

● Our main current activities
○ RE related

● Why do we need an EDA tool for secure systems

● Possible implementation directions

● Discussion

Hardware

Security Lab

A deeper look at Hardware based CWEs

● A (access control) and D (Debug)
require a kind of Information flow or Taint analysis.

○ Recent papers suggest the use of AVL trees from each
source (e.g., pin)

● T (Timing)
usually use dynamic analysis. But static analysis
can be used to calculate the conditions under which
a threat may be caused.

● M (Microcode)
can use the same technique as T, but needs to
represent the microcode operation as well (including
timing information).

● F (Features) and O (Others)
most of them can be handled via a lint type of tool or
a dynamic analysis

● S (Side Channel)
Depending on the type of the side channel attack,
we may use graph similarities and heat-based
techniques to estimate the existence of security
threat

A

Access

Control

D

Debug

F

Feature

M

Microco

de

O

Other

S

Side

channe

l

T

Timing

related

1263 1301 1192 1271 440 1255 1279

1323 1323 1294 1331 1332 325

1243 1313 1272 1315 1332 1331

1314 1272 1342 1311 1315

1247 1258 821

1220 1191 1264

1220

1318

1283

1037

663

821

1264

CWEs do not report Trojan Horses, although we may like to address this threat as well

Hardware

Security Lab

Different design alternatives that we are currently considering

GNN based
Two ways to use the graph
representation
- In a supervised way – but

we need many examples
for that

- To use it as a NAS
(Network Architecture
Search) to guide a more
effective way to perform
formal verification

(GNN can also be used to
locate locations that are
sensitive to HTH insertion)

Formal verification

● Widely used in System

design

● Suffer from “state explosion

and simplifications of

assumptions are needed to

make it practical

● The quality of the results

depends on the

assumptions and

simplifications you are

making

Data-flow – Information based

● Recent work (*) suggests

the use of “AST” (abstract

syntax trees(that represent

Information flow trees

● It is similar to SW and HW

tools are based on data-flow

analysis + conditions that

enable/block information

flow

(*) Ahmad, Baleegh, et al. "Don't CWEAT It: Toward CWE

Analysis Techniques in Early Stages of Hardware Design."

Proceedings of the 41st IEEE/ACM International

Conference on Computer-Aided Design. Oct. 2022.

Hardware

Security Lab

Preliminary thoughts:

● We believe that AST is too restricted and searching over the Netlist Graphs is

a better choice

● We need to annotate the graph to include timing and control information

● Using time-analysis techniques, similar to WCET calculation can provide the

timing related constrains

● We believe that using NAS based techniques is promising.

Hardware

Security Lab

New Graph-based Static Analysis tools

Graph-based representation

● Multiple paths

● Contain metadata

● Can deal with complex situations.

● Allow dealing with Timing

considerations

● Allow extracting sufficient and

necessary conditions in an

automatic way

AST-based representation

● Single path

● Hand-written queries

● Limited opportunities
(*)

Hardware

Security Lab

Comments

Thanks

Hardware

Security Lab

Backup

Hardware

Security Lab

Formal presentation of a CWE

● Tortuga logic suggests the use of the following format (other
tools suggests similar notations)

assert iflow(signal or event =/=> condition of state);

● For example assert iflow(secret_key =/=>
insecure_mem);

This rule states that the secret key should “not flow" or leak to an
insecure memory where secret_key and insecure_mem are signals in
the Verilog, SystemVerilog, or VHDL design.
The not flow operator makes this specification easy and compact.

Anohter Example
assert iflow (

{{Signals carrying confidential information}}
when ({{Privileged-mode bit is set}})

=/=>
{{Signals visible to unauthorized actor}}
);

Tortuga logic suggests a 5-step algorithm to
check that CWE-related issues do not exist
in a design
1. Identify CWE(s) relevant to the threat

model.
2. State plain-language security

requirement identified in the CWE(s).
3. List the assets (in the form of data or

design signals), objectives
(confidentiality, integrity, availability),
and security boundaries of the design
as they correspond to step 2.

4. Use the Radix security rule template
for the corresponding CWE verification
environments from Cadence®,
Mentor® A Siemens Business, and
Synopsys®.

5. Leverage the security verification
environment to signoff that each CWE

