

FABRICATION-TIME INSERTION OF HARDWARE TROJAN HORSES

Prof. Samuel Pagliarini <u>samuel.pagliarini@taltech.ee</u> Head of the Centre for Hardware Security Tallinn University of Technology

Outline

Introduction
 What is a hardware trojan?
 Textbook example

Fabrication-time insertionDemonstration

Ginal remarks

Source: <u>https://www.eejournal.com/article/can-you-insert-hardware-</u> trojan-spyware-ip-into-an-ic-at-the-fab-yes-you-can/

Outline

Introduction What is a hardware trojan? Textbook example

Fabrication-time insertionDemonstration

□ Final remarks

Source: <u>https://www.eejournal.com/article/can-you-insert-hardware-</u> trojan-spyware-ip-into-an-ic-at-the-fab-yes-you-can/

Threat models

How are chips designed?

Outline

Introduction

What is a hardware trojan?Textbook example

Fabrication-time insertionDemonstration

□ Final remarks

Source: <u>https://www.eejournal.com/article/can-you-insert-hardware-</u> trojan-spyware-ip-into-an-ic-at-the-fab-yes-you-can/

Theory

Let us consider the following logic as our "original circuit"

Theory

A hardware trojan is composed of two parts, a **trigger** and a **payload**

Textbook example

Trigger: AND gatePayload: XOR gate

Textbook example

10

Textbook example

Myths, inconsistencies, and threat models

□ Research on hardware trojan horses is ongoing for ~20 years

- Threat models that are incoherent
- Trojans that lack precise goal

Detection techniques that are meant for finding physical defects

□ This talk:

Attacker has ambitious goals
 Attacker is as capable as a circuit designer
 Has access to the same CAD tools
 Adversary + tools = problem!

Realistic execution times in chip design

... for a 5mm x 5mm design w/ 0.5B transistors:
Placement + OPT takes 2 days
CTS + OPT takes 3 days
Routing takes 2-4 days
Project load takes 1h
Zoom-in to inspect a specific area takes 1 minute
Exporting GDS takes 2-3h
DRC takes 24h + 12h + 4h

Terrible scenario: last minute bug <u>the day before</u> a tapeout!
 How to fix it without running the entire flow again?
 Pre-silicon ECO!

Outline

Introduction What is a hardware trojan? Textbook example

Fabrication-time insertion Demonstration

□ Final remarks

Source: <u>https://www.eejournal.com/article/can-you-insert-hardware-</u> trojan-spyware-ip-into-an-ic-at-the-fab-yes-you-can/

Goal: create a hardware trojan that enables a power side-channel attack
 Motivation: SPA is great if you know what you are looking for
 Challenge: Designing and inserting a hardware trojan that modulates power

□ **Novelty**: using an Engineering Changing Order (ECO) flow

ister feilige aufei fanst stand feilige aufeiner fan de stand feilige en gedelen standen stander beiden stander															ا يغاماً.												
	րիսի	l Turi	14	, i di	alla t	a kati	-14L.) Program 	որով	1717q	4-11	ղերո	р" <u>М</u> .		կար	Դեսլեր	1-1-1-1	, M.,	ייןייץ	1 vi	rdaj.	line li	T Jaar	, b utu	գորե	n produ	p ¹ ∼101
		are	tiply	are	tiply	are	are	tiply	are	tiply	are	are	tiply	are	are	are	are	are	are	are	tiply	are	tiply	are	are	are	
		nbs 🛓		nbs		o <mark>† squ</mark>	nbs 🖡		nbs 🖣		nbs to	nbs		nbs 🛟	nbs ‡∘	nbs ‡∘	o† squ	nbs ‡∘	nbs ‡∘	nbs 🖡		nbs 🕇		nbs 🗘	nbs to	nbs ‡∘	

Goal: create a hardware trojan that enables a power side-channel attack
 Motivation: SPA is great if you know what you are looking for
 Challenge: Designing and inserting a hardware trojan that modulates power

□ **Novelty**: using an Engineering Changing Order (ECO) flow

What circuit structure gives me controlled power consumption?

Goal: create a hardware trojan that enables a power side-channel attack
 Motivation: SPA is great if you know what you are looking for
 Challenge: Designing and inserting a hardware trojan that modulates power

□ **Novelty**: using an Engineering Changing Order (ECO) flow

What circuit structure gives me controlled power consumption? **Ring oscillator**

□ S0 and S1 are select bits. They are the information I am trying to leak!

Ni inverter Cells

TAL

19

Our Prototype

- □ Area: 1mm²
- **Technology:** 65nm
- Architecture: 4 crypto cores with one HT each
 - □HF = High frequency
 - \Box LF = Low frequency
 - □HD = High density

Our Prototype

Area: 1mm²

Technology: 65nm

Trojan size: 1000 xtors

Layout

Die Shot

Testbench Setup

Information leakage!

Outline

IntroductionWhat is a hardware trojan?

TheoryTextbook example

Proposed approachDemonstrations

Ginal remarks

Source: <u>https://www.eejournal.com/article/can-you-insert-hardware-</u> trojan-spyware-ip-into-an-ic-at-the-fab-yes-you-can/

HT insertion in finalized layouts is a realistic threat to today's globalized IC manufacturing and must **not** be taken lightly

We still have a long way to go on trojan prevention
 CAD support?

International Symposium on Physical Design

□ ISPD organizes a contest every year

□ Now, in the 19th edition, the topic is Hardware Trojans!

Open to students and postdocs!

□ Registration closes on Feb 1st!

References

□ "Side-channel trojan insertion – a practical foundry-side attack via ECO," **ISCAS'21**

"A Side-Channel Hardware Trojan in 65nm CMOS with 2uW precision and Multi-bit Leakage Capability," ASPDAC'22

□ "Ransomware Attack as Hardware Trojan: A Feasibility and Demonstration Study," **IEEE Access**

□ "Hardware Trojan Insertion in Finalized Layouts: a Silicon Demonstration," **TCAD**

□ "A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts," **ICCAD'22**

