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Outline

* Netlist Analysis Tasks

— ‘Divide-and-conquer’ approach consisting of netlist partition and identification

* Netlist Partition
— The Problem
— Graph Neural Network (GNN) for netlist partition

* Netlist Identification
— The Problem
— GNN for netlist identification

 (Conclusions & Discussions
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Netlist Analysis Tasks

* Modern SoC netlists consist of many functional blocks and sub-circuits:
— Difficult to analyse as a whole.
— Not all functional blocks or sub-circuits are of interest.

« A‘divide-and-conquer’ approach is usually adopted, which consists of:

— Netlist Partition: to partition a large circuit netlist into smaller sub-circuits.
— Netlist Identification: to identify the functionality of a sub-circuit.
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[1] X. Hong, T. Lin, Y. Shi and B. H. Gwee, "GraphClusNet: A Hierarchical Graph Neural Network for Recovered Circuit Netlist Partitioning," in IEEE Transactions on Artificial Intelligence,
2022, doi: 10.1109/TAI.2022.3198930.
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Netlist Partition: The Problem

 To solve the ‘Normalized-cut’ (N-cut) graph partition/clustering
problem:
— Observation: sub-circuits have more connections within than in-between.

— To ‘cut’ as little connections as possible yet to have meaningful size for each
partition.

n-cut

link (V;, V;\V)
Tk Z link(V;, V)

 Existing methods and issues:

—  N-cut problem is NP-hard and its solution is usually approximated.

— Existing methods either do not optimize for n-cut directly such as spectral
clustering or may stuck at local minima such as methods based on iterative
search algorithms.

— Further, existing methods only leverage on connectivity but not node
features.

© 2022, Nanyang Technological University. All rights reserved.
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Graph Neural Network (GNN) for Netlist Partition

N

N

 Advantages of GNN: 1r
— GNN leverages on both connectivity and node features. / \
— Can optimize for an objective function (e.g. N-cut) directly as a loss function UEELITL }
(unsupervised setting). Aggregate
o
« Challenges of GNN: 9
— GNN is inherently local and deep architecture is difficult. S
— Need to find a meaningful node feature for the intended task.
Aggregate }
« We propose a novel GNN for netlist partition named ‘GraphClusNet’ [I: N\ >/
— Anovel hierarchical architecture which finds clusters from local to global. o
— An n-cut-based loss function to optimize for the objective function directly. j‘@ - X
— Alocation-based node feature which suits the partition task and avoids local minima. S <
- @

[1] X. Hong, T. Lin, Y. Shi and B. H. Gwee, "GraphClusNet: A Hierarchical Graph Neural Network for Recovered Circuit Netlist Partitioning," in IEEE Transactions on Artificial
Intelligence, 2022, doi: 10.1109/TAI.2022.3198930.
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Proposed Architecture

* Multi-stage hierarchical architecture:
— Intuition: sub-circuits group hierarchically into larger circuits.
—  Optimize for ‘n-cut’ loss at each stage.
— Final stage can perform either bipartition or multiway partition.

Input Stage Intermediate Clustering Stage Output Stage
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Architecture of GraphClusNet
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Proposed Loss Function

* ‘N-cut’ based loss function:
— The numerator computes the intra-cluster connections of each cluster.
— The denominator computes the total connections of each cluster.
— Effectively searches for clusters that have more connections within and less connections in-between.

. + 1
7 =T s Dlag(S AS) where A is the adjacency matrix, D is the degree
neut— Diag(STDS) matrix, and S is the cluster assignment matrix.

« Allows direct optimization of the N-cut objective function.
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Proposed Node Feature

* Location-based node feature: . Intuition: logic gates
from the same sub-

Eﬁ@@@@@ circuit tend to locate
@@@@@@ close to each other on
W i@@@@@@ =1 3 By the floorplan.

2 3 4
T _ FERFH R — A B B R - B — .4 1 * Divide floorplan into
T B oo man an a a |dvdads | squares of different
: R T | T - sizes.
! —ﬁ[ﬁ:i B 1 " uxp nee . Assign node feature to
L | 2 - 2 LSS nodes based on their
Pi}h 1 — ] — 2 location number at each
(a) 2, Xem™d square size.

(©) +  Effectively provides a
node feature where
nodes close to each

|z other have more similar
®) entries.

Location-based Node Feature
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Partition Results: Bipartition on SoC Netlists

 Performed bipartition on real FPGA SoC circuit netlists:
— To extract major functional block from a netlist.
—  Our proposed GraphClusNet achieved highest NMI and usually lowest n-cut among competing methods.
— It avoided local minima and can obtain more meaningful partitions.

FPGA Circuits

Metrics Ground Truth

SC [6]

Louvain? [10] Graclus [7] ARVGA [18] GraphClusNet-RI GraphClusNet GraphClusNet-LR

3051 SoC NMI 1 0.5794+0.297 0.8914+0.023 0.7524+0.248 0.8234+0.018  0.86740.232 0.967-+0.030 0.96540.032
n-cut 1.060 2.66441.574 1.28940.082 1.289+0.079 3.227+0.441 1.037+0.041 1.009+0.065 1.0260.084

ARM CORTEX SoC NMI 1 . 0.9824+0.002 0.94640.004 0.98_6:&0.003 0.8584+0.0017  0.96340.038 0.9$7j:0.006 0.9.‘30:ﬁ:0.000
n-cut 1.376 1.3974+0.041 25114+£1.771 1.364+0.000 3.170+£0.422  [.511+£0.211 1.362-+0.000 1.3560.000

RISC-V-I SoC NMI 1 0.85840.101 0.83840.018 0.805x+0.055 0.581£0.055  0.8836+0.070  0.928+0.009 0.92140.008
n-cut 2.940 3.55740.962 5.85143.312 3.145+0.251 9.132£1.032  2.867+0.114  2.794+0.046 2.78740.025

RISC_V-IMSU SoC NMI 1 0.85040.016 0.86940.083 0.798+0.076 0.210£0.067  0.847+0.034  0.857=0.064 0.89640.075
n-cut 2775 3.77540.288 11.554+14.76 3.010+£0.090 27.34£13.16  3.607+0.545 3.6294+0.284 2.883=+0.090

RISC_V-IMZICSR SoC NMI 1 0.865+0.055 0.88640.005 0.856£0.078 0.349+0.122  0.930£0.055 0.986+0.005 0.988+0.005
n-cut 2.254 2.87140.539 5.14947.039 2.603+0.246 17.11£6.762  2.539+1.089  2.268+0.046 2.25740.043

openFPU NMI 1 0.79240.005 0.7764+0.089 0.812+0.136 0.318+0.110  0.782+0.162 0.86540.128 0.87440.123
n-cut 4.929 5.675+0.080 6.1804+0.661 5.802+0.963 67.12+33.09  5.117£0.241 5.305+0.879 5.280+0.870
200CS3 NMI l 0.5424-0.066 0.54240.032 0.777;&-0.0%_ 0.4191—0.0_0.3. 0.638+0.082 0.906it).083 ‘0.906i0.083|
n-cut 1.605 38.9544.239 24.3341.813| 1.730+0.876] 107.5+ 0.666  2.7884+0.479 1.756+0.785 1.739+0.771

9

@ NANYANG TECHNOLOGICAL UNIVERSITY ' SINGAPORE

© 2022, Nanyang Technological University. All rights reserved.



O SFR

@ Decoder
(O Memory Interface

Partition Results: Multiway Partition ..

* Performed multiway partition on 8051 microcontroller
core netlist:
— To extract multiple functional blocks from a netlist.

—  Our proposed GraphClusNet achieved highest NMI and F1-score
among competing methods. N

8051 Core Circuit

Functional Blocks/IC  No. Nodes Metrics SC [6] Louvain [10] Graclus [7] ARVGA GraphClusNet
ALU 456 Fl-score  0.88964+0.0387 0.9251+£0.0294 0.92704+0.0074 0.66614+0.0109 0.93394-0.0322

SFR 1027 Fl-score  0.8968+0.0263 0.7658+0.1074 0.886940.1013 0.721620.0110 0.94314-0.0048
Memory Interface 494 Fl-score  0.58054-0.0986 0.5489+0.1242 0.712540.1324 0.5767+0.0188 0.8060+0.0661
Decoder 252 Fl-score  0.673840.1434 0.64260.0810 0.822140.1580 0.592840.0070 0.926010.0103

8051 Core 2229 NMI 0.596640.0574 0.5621+0.0329 0.65744-0.0683 0.47424-0.0070 0.71764-0.0429

10
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Visualization of Partition Results

 We visualized node embeddings after each stage of GNN:
— Local clusters were merged into higher level clusters.
—  Cluster purity also improved at higher levels.

Average Purity=0.779 Average Purity=0.939 1 Average Purity=0.994 ']

. 2 - £ - f
@ Processor Core @ Processor Core ; . @ Processor Core '
® Peripheral Circuits ® Peripheral Circuits  « ® Peripheral Circuits !

11
t-SNE Visualization of Node Embeddings after Each Stage of GNN (8051 SoC)
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Netlist Identification: The Problem

* To identify the functionality of a flattened netlist:
— Used to be done manually with expert knowledge.
— Observation: different circuit graphs have distinctive structures and gate compositions.

— Netlist identification problem may thus be formulated as a graph classification problem using machine-
learning methods. N

Encryption Circuit Filter Circuit Image Processing Circuit -
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GNN for Netlist Identification

« Train a GNN to classify unknown netlists into known classes:

— Inputis a circuit graph with gate type as node feature and output is a class label indicating the type of
circuit.

— Our GNN consists of two layers of Graph Convolutional Network (GCN).

GCN Layers Readout Classification
Layer Layer

4 /g /L

Circuit Graphs VL Node N Graph
{with initial node features) Embedding Embedding

o6

Our Proposed GNN for Netlist Identification [2!
13

[2] X. Hong, T. Lin, Y. Shi and B. H. Gwee, "ASIC Circuit Netlist Recognition Using Graph Neural Network," in Proc. 2021 IEEE International Symposium on the Physical and
Failure Analysis of Integrated Circuits (IPFA), 2021, pp. 1-5, doi: 10.1109/IPFA53173.2021.9617311.
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Case Study: Adder Circuit Classification

« Classify four types of adder circuits:

— Four adder structures: Ripple Carry Adder (RCA), Carry Look-Ahead Adder (CLA), Carry Select
Adder (CSLA), and Carry Skip Adder (CSKA).

So S S, S3 S4 Ss S Sy Ss S S1o S
A A A A A A A A A A A A
C4 C Cs C, Cs Ce C; Cs Co C1o Cu Ciz
Co> FA > FA > FA > FA FA > FA > FA > FA FA > FA > FA > FA |—>
R R R
Ay By //I-:1 15\1 iRz /gz /ll-:s /gs A; By /»Rs /lB\s /xs /lB\e /l|:7 /gv As Bsg //I-:s /lB\s :\l\m /Bl\w /A|\11 /B|\11

12-bit Ripple Carry Adder (RCA)

C

Carry Look-Ahead Logic Carry Look-Ahead Logic Carry Look-Ahead Logic =

A A A A A A A A N A r A A A A A

Go Po|So | [G1P4]S1| [G2Ps|S2| |GsPs|Ss Gy Py|Ss| [Gs Ps|Ss | [Ge Ps] S6 | [G7 P7] 'Sy Ss | |Go Po|Ss | [G1oP1dS10| [G11P+Sis FA = Full Adder
A A A A A A A A A A A A G = Generate

P = Propagate
c FA
° cl FA |l FA [ FA al FA ] FA )] FA |l FA el FA (] FA el FA o] FA
(R (RN rA A K K
Ao By A, B A; B, A; B; As By /Il-:s /Igs /]/-:5 /IB\G k /15\7 As Bs /ka /Igg //-‘]«\10 /B]\m 1\11 4\11

12-bit Carry Look-Ahead Adder (CLA) 14
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Case Study: Adder Circuit Classification

So S1 Sz 33
A A A A
C4 C. Cs
> FA [ FA [ FA || FA
/Xo /go /£1 21 IRz gz ;I:s /gg /'24 /ga /xs gs /)Rs /gs /£7 37 /Al\s /lB\B A/Ql\g Qg 1\10 /BI\m '/Ql\ﬂ {B|\11

12-bit Carry Select Adder (CSLA)

AND |— I AND I_

[P,] s, S S, S3 Ss S5 Ss S; * Ss Ss St Sus FA = Full Adder
* A A A A A A A A 3 A A A A IE C. P =Propagate

X AND = AND Gate

Co FA ?1 FA ?2 FA ?3 FA c. FA ?5 FA ?s FA ?7 FA c. FA ?9 FA ?10 FA ?11 FA c. MUX = Mu'tiplexer
/;Ro llB\o 1\«1 31 /I[;z /gz lka gs //|:4 34 /»Ks gs /l[:s /gs /1;7 /27 /'!:’ llB\a 1\‘9 39 /A[\“’ /BT\") 1\" /B[\"
12-bit Carry Skip Adder (CSKA) 15
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Data Preparation

« Synthesized circuit netlists of varying bit-widths for training and testing data:
— Synthesized 4 types of adder circuits from 5-bit to 64-bit resulting a total of 240 netlists.
— Used 40 netlists for training GNN and remaining 200 netlists for testing.
— Used one-hot encoded gate type as node features.

module rca_abit (1_add_terml, 1_add_term2, o_result);

1

2

El input [3:0] i_add_tersl;
4 input [3:0] i_add_tern2;
5  output [4:0] o_result;
6

7

8

wire vdd = 1'b1;
wire gnd = 1

bo;

» Different node
colours represent
different gate
types

15 INvXL INVXI_L ( LAlgnd), (Y(Za) )
16 OR2x2 OR2x2_1 ( .A(1_add_termz[o]), .8(1
17 NAND2X1 NAND2X1_1 ( .Al1 add_ters2(
18 NAND3XI NAND3X1_L { .A(_4_), .BI_6
19 NORZXL NORZXL_1 [ .A(i_add_te

20 anp2x2 AND2X2_ 1 ( .A(i_add
21 0AI21X1 OAIZIX1L ( .A(_1_
22 NAND2X1 NAND2X1 2 ( .A(C3_
23 oar2ix1 oarzixiz ( .a(_4_), .B(_1),
24 INVXL INVX1 2 (.A(w_CARRY_1),

25  OR2x2 OR2X2_2 ( .A(i_add_termz[1]),
26 NAND2X1 NANDZX13 | .A(i_add_term2(

dd_term1[11), .v(_12_) ):
B(1_add_term1[11),”.¥{_23_) )

27 NANDIX1 NAND3X12 ( .A(_T1), .BI_1 ¥(_14_)

28 NOR2XL NORZXL_2 ( .A(1_add_term2(1)), .B(i_add_ ), ¥ 8)

20 AND2X2 AND2X2_2 | .A(1_add_term2(1]), .B(i_add_term1(1]), .¥(_9_} );
30 OAIZIX1 OAIZ1X13 ( .A(_8), .B(_8_), .ClW_CARRY_1 ), .¥(_10) };

31 NAND2X1 NANO2X1 4 ( .A(_10_), .B{_14_), .¥{_0_1_) )

32 OAIZIX1 OAI21X14 ( LA(_11]), .BI_8_F, .CI_13_}, .¥(w CARRY 2 ) );

33 INVXL INWXD_3 | .Alw_CARRY_2 ), .¥(_18_) )}

£ OR2X2 OR2x2_3 ( .Ali_add_term2[2]) dd_term1[2]), .v(_19_) ):

35 NAND2X1 NANDZX15 | .A(1_add_ter -8(i_add_termil21), .¥(_20_) );
36 NAND3X1 NAND3X13 ( .A(_I8_), .B (_19_), vzl ) );

37 NOR2X1 NOR2X1_3 ( .A(i_add_termz
38 AND2XZ AND2X2_3 ( .A(i_add_term2

term(2]), .¥(15)) );
1021), .v((160) );

39 0AI2IX1 OAI21X1S { .A(_15_), .B 2}, 7))
48 NAND2X1 NAND2X1 6 ( .A(_17_), .B ) )i

41 0AT21X1 0AT21X1 6 ( .A(_18), .B(_15_), .€(_20_), .¥(w_CARRY 3_) );
42 INVXL INVX) 4 (. Alw CARRY 3 ), ¥( 25 ) );

Netlist of A 4-bit RCA Circuit Graph of 4-bit RCA 16
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Graph Visualization

8-bit CSLA 12-bit CSLA 16-bit CSLA 8-bit CSKA 12-bit CSKA 16-bit CSKA

17
Graph Visualization of Adder Circuit Netlists
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Netlist Classification Results

« Our GNN achieved high classification accuracy on unseen test data:
— GNN achieved classification accuracy of 99% on unseen test data.

— Graph embeddings of different class netlists grow separated after each layer of GNN demonstrating its
discriminating power.

GCNL GCN2 Final class
1 o T——_ ., 2 S n
bl N : "{SLA
0 . “1 « CsKA
» Red: RCA
o ) ~e |, Green: CLA
RCA |+ Blue: CSLA
0 CLA
=1 N . o ol
(a) (b) (c)
t-SNE Visualization of Adder Circuit Graph Embeddings after Each Layer of GNN 18
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Conclusions & Discussions

« GNN has demonstrated some unique advantages over conventional machine-learning
methods for netlist analysis including its ability to process graph connectivity together
with node features.

 GNN can automate certain analysis tasks such as netlist identification.

* A major limitation of GNN, i.e. its inherent local nature and difficulty with deep architecture
can be alleviated by introducing hierarchical architecture and clustering objective.

« While a shallow GNN seems effective at identifying simple circuits such as adders, a
deeper GNN (with hierarchical architecture) may eventually be needed to reason at higher
structural levels for more complex circuit such as a microcontroller.

19
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