
Graph Neural Network 

for Circuit Netlist 

Analysis

LIN Tong

Senior Research Scientist

School of Electrical and Electronic Engineering

January 2023

HARRIS 2023



Outline

• Netlist Analysis Tasks
– ‘Divide-and-conquer’ approach consisting of netlist partition and identification

• Netlist Partition
– The Problem

– Graph Neural Network (GNN) for netlist partition

• Netlist Identification
– The Problem

– GNN for netlist identification

• Conclusions & Discussions

2



Netlist Analysis Tasks
• Modern SoC netlists consist of many functional blocks and sub-circuits:

– Difficult to analyse as a whole.

– Not all functional blocks or sub-circuits are of interest.

• A ‘divide-and-conquer’ approach is usually adopted, which consists of:

– Netlist Partition: to partition a large circuit netlist into smaller sub-circuits.

– Netlist Identification: to identify the functionality of a sub-circuit.

[1] X. Hong, T. Lin, Y. Shi and B. H. Gwee, "GraphClusNet: A Hierarchical Graph Neural Network for Recovered Circuit Netlist Partitioning," in IEEE Transactions on Artificial Intelligence, 
2022, doi: 10.1109/TAI.2022.3198930.

‘Divide-and-conquer’ 
approach [1]

3



Netlist Partition: The Problem
• To solve the ‘Normalized-cut’ (N-cut) graph partition/clustering 

problem:

– Observation: sub-circuits have more connections within than in-between.

– To ‘cut’ as little connections as possible yet to have meaningful size for each 

partition.

• Existing methods and issues:

– N-cut problem is NP-hard and its solution is usually approximated.

– Existing methods either do not optimize for n-cut directly such as spectral 

clustering or may stuck at local minima such as methods based on iterative 

search algorithms.

– Further, existing methods only leverage on connectivity but not node 

features.

4

‘cut’



• Advantages of GNN:

– GNN leverages on both connectivity and node features.

– Can optimize for an objective function (e.g. N-cut) directly as a loss function 

(unsupervised setting).

• Challenges of GNN:

– GNN is inherently local and deep architecture is difficult.

– Need to find a meaningful node feature for the intended task.

• We propose a novel GNN for netlist partition named ‘GraphClusNet’ [1]:

– A novel hierarchical architecture which finds clusters from local to global.

– An n-cut-based loss function to optimize for the objective function directly.

– A location-based node feature which suits the partition task and avoids local minima.

Graph Neural Network (GNN) for Netlist Partition

[1] X. Hong, T. Lin, Y. Shi and B. H. Gwee, "GraphClusNet: A Hierarchical Graph Neural Network for Recovered Circuit Netlist Partitioning," in IEEE Transactions on Artificial 
Intelligence, 2022, doi: 10.1109/TAI.2022.3198930.
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• Multi-stage hierarchical architecture:

– Intuition: sub-circuits group hierarchically into larger circuits.

– Optimize for ‘n-cut’ loss at each stage.

– Final stage can perform either bipartition or multiway partition.

Proposed Architecture

Architecture of GraphClusNet
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• ‘N-cut’ based loss function:

– The numerator computes the intra-cluster connections of each cluster.

– The denominator computes the total connections of each cluster.

– Effectively searches for clusters that have more connections within and less connections in-between.

• Allows direct optimization of the N-cut objective function.

Proposed Loss Function

where A is the adjacency matrix, D is the degree 

matrix, and S is the cluster assignment matrix. 



• Location-based node feature:

Proposed Node Feature

Location-based Node Feature

• Intuition: logic gates 

from the same sub-

circuit tend to locate 

close to each other on 

the floorplan.

• Divide floorplan into 

squares of different 

sizes.

• Assign node feature to 

nodes based on their 

location number at each 

square size.

• Effectively provides a 

node feature where 

nodes close to each 

other have more similar 

entries.
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Partition Results: Bipartition on SoC Netlists
• Performed bipartition on real FPGA SoC circuit netlists:

– To extract major functional block from a netlist.

– Our proposed GraphClusNet achieved highest NMI and usually lowest n-cut among competing methods.

– It avoided local minima and can obtain more meaningful partitions.
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Partition Results: Multiway Partition

• Performed multiway partition on 8051 microcontroller 

core netlist:

– To extract multiple functional blocks from a netlist.

– Our proposed GraphClusNet achieved highest NMI and F1-score

among competing methods.
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• We visualized node embeddings after each stage of GNN:

– Local clusters were merged into higher level clusters.

– Cluster purity also improved at higher levels.

Visualization of Partition Results

t-SNE Visualization of Node Embeddings after Each Stage of GNN (8051 SoC)
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• To identify the functionality of a flattened netlist:

– Used to be done manually with expert knowledge.

– Observation: different circuit graphs have distinctive structures and gate compositions.

– Netlist identification problem may thus be formulated as a graph classification problem using machine-

learning methods. 
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• Train a GNN to classify unknown netlists into known classes:

– Input is a circuit graph with gate type as node feature and output is a class label indicating the type of 

circuit.

– Our GNN consists of two layers of Graph Convolutional Network (GCN).

Our Proposed GNN for Netlist Identification [2]

[2] X. Hong, T. Lin, Y. Shi and B. H. Gwee, "ASIC Circuit Netlist Recognition Using Graph Neural Network," in Proc. 2021 IEEE International Symposium on the Physical and 
Failure Analysis of Integrated Circuits (IPFA), 2021, pp. 1-5, doi: 10.1109/IPFA53173.2021.9617311.
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Case Study: Adder Circuit Classification

12-bit Ripple Carry Adder (RCA)
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• Classify four types of adder circuits:

– Four adder structures: Ripple Carry Adder (RCA), Carry Look-Ahead Adder (CLA), Carry Select 

Adder (CSLA), and Carry Skip Adder (CSKA).
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Case Study: Adder Circuit Classification

12-bit Carry Select Adder (CSLA)

FA = Full Adder

P = Propagate

AND  = AND Gate

MUX = Multiplexer

12-bit Carry Skip Adder (CSKA)
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• Synthesized circuit netlists of varying bit-widths for training and testing data:

– Synthesized 4 types of adder circuits from 5-bit to 64-bit resulting a total of 240 netlists.

– Used 40 netlists for training GNN and remaining 200 netlists for testing.

– Used one-hot encoded gate type as node features.

Data Preparation

Netlist of A 4-bit RCA Circuit Graph of 4-bit RCA

• Different node 

colours represent 

different gate 

types
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Graph Visualization

Graph Visualization of Adder Circuit Netlists

8-bit RCA 12-bit RCA 16-bit RCA 8-bit CLA 12-bit CLA 16-bit CLA

8-bit CSLA 12-bit CSLA 16-bit CSLA 8-bit CSKA 12-bit CSKA 16-bit CSKA
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• Our GNN achieved high classification accuracy on unseen test data:

– GNN achieved classification accuracy of 99% on unseen test data.

– Graph embeddings of different class netlists grow separated after each layer of GNN demonstrating its 

discriminating power.

Netlist Classification Results

t-SNE Visualization of Adder Circuit Graph Embeddings after Each Layer of GNN 18



Conclusions & Discussions
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• GNN has demonstrated some unique advantages over conventional machine-learning 

methods for netlist analysis including its ability to process graph connectivity together 

with node features.

• GNN can automate certain analysis tasks such as netlist identification.

• A major limitation of GNN, i.e. its inherent local nature and difficulty with deep architecture 

can be alleviated by introducing hierarchical architecture and clustering objective.

• While a shallow GNN seems effective at identifying simple circuits such as adders, a 

deeper GNN (with hierarchical architecture) may eventually be needed to reason at higher 

structural levels for more complex circuit such as a microcontroller. 
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